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Flash Photolytic Generation and Study of the Enol of of information now available on the chemistry of enol isomers

2-Hydroxy-2-cyanoN-methylacetamide in Aqueous of simple aldehyde and keton&s.
Solution, Leading to an Empirically-Based Estimate To this relatively meager knowledge we now add a study of
of the Keto—Enol Equilibrium Constant for the the 2-hydroxy-2-cyandN—methyIacetam|dél,, ketp—enol system,
Parent Unsubstituted Acetamide in That Medium eq 1. Our experimental results, coupled with data from the
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Ural State Technical Uniersity, 620002 Ekaterinburg, Russia for the parent acetamide itself and thereby supply the first
) empirically based evaluation of this quantity for a simple
_ ~ Receied October 16, 2000 ynsubstituted carboxylic acid amide.
Revised Manuscript Receed January 23, 2001 We generated end? in aqueous solution by photolysis of
) ) ) ] ~ 2-diazo-2-cyandN-methylacetamide3. Irradiation of diazo com-
Enols of simple carboxylic acids and their ester and amide pounds such as this generally results in a Wolff rearrangement
derivatives are very unstable, both kinetically and thermodynami- producing a ketene4, which in aqueous solution would be
cally,! and little direct information on their chemistry is conse- hydrated to a carboxylic aci, eq 2. When the migratory aptitude
quently available. Some studies have been made using very
bulky?® or strongly electron-withdrawing substituehitsn the 2 MeNH H,0 HMe
[-position to stabilize the enols, and a few less stable enols have N(W\(NHMe —h‘i> =0 — )
been examined using fast-reaction flash photolytic technigjies. : NC NG ~COH
Carbon-acid ionization constants for enolate ion formation from 3 4 5
some acetic acid esters and amino acids have also been determined
by combining very slow rates of enolization with estimates of Of the potentially migrating group is poor, however, another
rate constants for the reverse reacfigthe knowledge obtained ~ Process intervenes, in which loss of nitrogen givesxacarbo-

in this way, however, is still very much less than the large body Nylcarbene,6, whose hydration provides an endl,'* and
ketonization of that produces a hydroxyamidlieas the ultimate
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Figure 1. Rate profile for the ketonization of the enol of 2-hydroxy-2-
cyanoN-methylacetamide in ¥D(O) and BO (A) solution at 25°C.
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Communications to the Editor

component inherent in this isotope effétiand the near-unity
value of K'y+/Kp+ consistent with the very fast, perhaps partly
diffusion-controlled, nature of that reaction. The isotope effect
onk; is large because the secondary component here operates in
the normal ku/ko > 1) direction and the isotope effect o@5
agrees well with equilibrium isotope effects on the ionization of
other oxygen acid¥

We also measured rates of enolization of 2-hydroxy-2-cyano-
N-methylacetamide by monitoring loss of the NMR signal from
its B-proton in DO solutions of DCI. Adjustment of these data
to H,O solutiori® and combination of the results with ketonization
rate constants at the same acidity, then gave the—leol
equilibrium constanKe = (8.38+ 0.61) x 10°%3, pKg = 12.08
4 0.03. This result can be combined with the enol acidity constant
QS according to the relationshigQ5 = QX to give Q¥ = (5.87
4+ 0.51)x 107 M, pQK = 16.23+ 0.04, as the acidity constant
of 2-hydroxy-2-cyandN-methylacetamide ionizing as a carbon
acid.

The value of g for 2-hydroxy-2-cyandN-methylacetamide
determined here may be used to estimake for the parent
N-methylacetamide by making allowance for the effects of its

extrapolation of these data to zero buffer concentration gave hydroxyl and cyano groups. The effect of hydroxyl can be

intercepts, which, together with the perchloric acid data, were

estimated fromApKg = 3.7 as the combined effect of hydroxyl

used to construct the upper rate profile shown in Figure 1. Some gnq phenyl, based uporkp = 16.2 for mandelic ackd and [Ke

measurements were also made p®Folution, and these provided
the lower rate profile of Figure 1.

These rate profiles are typical of enol ketonization reactions.
Ketonization is known to occur through rate-determinfigarbon
protonation of either the enol or enolate imas illustrated for

= 19.9 for acetic acid’ modified by ApKe = 3.3 for phenyl,
based upon I§e = 2.9 for phenylacetaldehyéfeand Kg = 6.2

for acetaldehydé? this givesApKe = 0.4 for the hydroxyl group
alone. The effect of cyano can be estimated in a similar manner
from ApKg = 12.7 for the combined effect of cyano and phenyl,

the present system by eq 4. The acid-catalyzed portion of suchpygeq uponge = 7.2 for cyanophenylacetic aciiand the value
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cited above for acetic acid, again modified by the phenyl effect

of ApKg = 3.3; this givesApKe = 9.4 for the cyano group alone.

This cyano group effect agrees well with another estimapKe

= 9.0, based uponKx = 9.6 for ethyl cyanoacetaf& and Kg

= 18.6 for ethyl acetat® The average of these two cyano group

effects, plus the hydroxyl group effect, applied tgp= 12.1

then leads to Isg = 21.7 for unsubstitutetN-methylacetamide.
This is a sensible result, in that, coupled witkgp= 18.6 for

ethyl acetate andix = 19.9 for acetic acid, it gives a series of

rate profiles at high acidity then represents carbon protonation regularily decreasing enol content. The enol contents of carboxylic

of the enol by H. As [H'] drops, this reaction soon gives way

acids and their esters and amides are very low because the keto

to carbon protonation of the much more reactive enolate ion by isomers are stabilized by conjugation of their carbonyl groups

H*, and, with un-ionized enol as the initial state, this produces
the lower “uncatalyzed” portion of the rate profile. At still lower
[H*], carbon protonation of the enolate by®itakes over, and
with un-ionized enol still as the initial state, this gives a region
of apparent hydroxide-ion catalysis. Eventually, at low enough
[H*], enolate ion becomes the initial state, and protonation of
that by HO produces the second “uncatalyzed” reaction plateau.

with the electron-donating oxygen and nitrogen moieties directly
attached. Since electron-donating ability increases as this moiety
changes from ethoxyl in ethyl acetate to hydroxyl in acetic acid
to methylamino irN-methylacetamide, as evidenced for example
by the R" resonance parameters1.07 for OEt,—1.25 for OH,
and—1.78 for NHMe?2? keto-isomer stabilization should increase,
and enol contents consequently should decrease, along this series.
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